Rational homotopy theory for non-simply connected spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy Categories for Simply Connected Torsion Spaces

For each n > 1 and each multiplicative closed set of integers S, we study closed model category structures on the pointed category of topological spaces, where the class of weak equivalences are classes of maps inducing isomorphism on homotopy groups with coefficients in determined torsion abelian groups, in degrees higher than or equal to n. We take coefficients either on all the cyclic groups...

متن کامل

Rational Points of Rationally Simply Connected Varieties

These are notes prepared for a series of lectures at the conference Variétés rationnellement connexes: aspects géométriques et arithmétiques of the Société Mathématique de France held in Strasbourg, France in May 2008.

متن کامل

Disconnected Rational Homotopy Theory

We construct two algebraic versions of homotopy theory of rational disconnected topological spaces, one based on differential graded commutative associative algebras and the other one on complete differential graded Lie algebras. As an application of the developed technology we obtain results on the structure of Maurer-Cartan spaces of complete differential graded Lie algebras.

متن کامل

Rational homotopy theory

1 The Sullivan model 1.1 Rational homotopy theory of spaces We will restrict our attention to simply-connected spaces. Much of this goes through with nilpotent spaces, but this will keep things easier and less technical. Definition 1. A 1-connected space X is said to be rational if either of the following equivalent conditions holds: 1. π∗X forms a graded Q-vector space. 2. H̃∗X forms a graded Q...

متن کامل

Rational homotopy stability for the spaces of rational maps

Let Holnx0(CP 1,X) be the space of based holomorphic maps of degree n from CP1 into a simply connected algebraic variety X. Under some condition we prove that the map Holnx0(CP 1,X) −→ Hol x0 (CP 1,X) obtained by compositing f ∈ Holnx0(CP 1,X) with g(z) = z, z ∈ CP1 induces rational homotopy equivalence up to some dimension, which tends to infinity as the degree grows.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1999

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-99-02463-0